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LETTER TO THE EDITOR 

Bore1 transform, resurgence and the density of states: 
lattice Schrodinger operators with exponential disorder 

F Constantinescu and U Scharffenberger 
Institut fur Angewandte Mathematik, Universitat Frankfurt am Main, D-6000 Frankfurt, 
Federal Republic of Germany 

Received 9 June 1985 

Abstract. We study the averaged Green function of a tight-binding-model with exponen- 
tially distributed disorder as an explicit example for a resurgent function in the sense of 
Ecalle. As an application, one can find the (exact) asymptotic decay of the density of 
states and the large-order behaviour of the coefficients of the perturbation expansion. 

The motion of a quantum mechanical particle in a random potential on the v- 
dimensional lattice Z" is described by the Hamiltonian 

H = H,+'v, (1) 

where Ho has matrix elements 

and the random potential V consists of independent and indentically distributed 
random variables V( i )  ( i  E Zy) with distribution dh ( V). In order to make clear the 
main ideas of this letter we discuss the exponential model 

although other models can also be considered. 
The averaged Green function 

c 

can be written as a Neumann (random path) expansion for the matrix elements of the 
resolvent ( H -  E)- '  [I]: 

G ( E ,  x, y )  = n 5 [( V, -E)"j"'"]-' dh(  V,) 
w : x - y  j c w  

(5) 

Where w is a random path on Z' and n j ( w )  is the number of times w visits j E Z". 
The series (5) can be obtained by expanding the resolvent (H - E)-'  around its diagonal 
part and labelling the resulting terms by lattice paths w. It is similar in structure to a 
cluster (high temperature or polymer) expansion of statistical mechanics. For large 
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energies I € (  >> 1 the expansion (5 )  is absolutely and uniformly convergent [l]. By 
expanding the factors ( V, - E)-"J'"', one obtains a (formal) divergent expansion in 
powers of E - ' .  It is not difficult to prove along the lines of [2] that this expansion is 
Borel summable in E-'  although the density of states 

p ( E )  = Im G ( E  +io, 0,O) (6) 

does not share this property [2] ( p  cannot be Borel summable because it decreases 
exponentially for E + -CO). Nevertheless, p can be uniquely reconstructed from the 
perturbation expansion of G [2]. 

In this letter we will be concerned with the Borel transform B ( t )  of G ( E ) .  We 
study the analytic properties of B( t )  in the (complex) Borel variable t and prove that 
it has a simple 'resurgent' structure (for the definition of resurgence see below). The 
detailed knowledge of the analytic structure of B opens some perspectives for the 
rigorous study of 6, in particular the density of states. We give some applications 
concerning the large-order behaviour of the coefficients of the perturbation expansion 
for and the decay of the density of states for E + -W. We mention that there is 
some recent interest in applying resurgence to renormalisation group ideas in dynamical 
systems and quantum field theory [3, 41. 

Let ?( t )  be the Borel transform of f ( x )  defined through the Laplace transform 

f( x) = lom f (  t )  exp( - t x )  dt. (7) 

Then, if F =fl .f2, we have 

a t )  = (?I *?At) (8) 
where the convolution * is given by 

r t  

For F =foflf2.. .fn, (8) and (9) give 

In our model, we rewrite the expansion ( 5 )  as 

which is obtained by scaling the integration variable. From (1 1) it is obvious that the 
Borel transform B ( t )  of e is given by a sum of convolutions of powers of t with 
integrals of the form 
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where we have denoted the number of sites in w by J w )  = m + 1, m 5 1. The powers 
of t present no difficulties such that we resume to study the typical integral I ( t ) .  We 
use the Feynman formula [ 5 ]  

where& = E;=, Ay This gives 

The T integrals can be computed explicitly. In order to study the analytic structure 
of I (  t )  we restrict ourselves to ni = 1, i = 0, 1, .  . . , m ;  the general case is similar (in 
fact through partial integrations in (1 1) we can reduce the general case to this particular 
one). After doing the 7 integrals we get (up to the combinatoric constants) 

The advantage of (15) over (14) is that all integrals are now taken between constant 
limits. We can now study the analytic structure of I ( ? )  in the complex t plane by 
using the powerful theory of Landau singularities for Feynman integrals [ 5 ] .  We find 
that it has a particularly simple singularity structure: there are only isolated (simple 
poles) and logarithmic singularities present at t = -1, -2 , .  . . . This reminds us of the 
so-called resurgent structure [6]. A function is called resurgent if its Borel transform 
B( t )  has only isolated and logarithmic singularities, i.e. has the form locally of 

B( t )  = Bv) (  t - 7) + [By’( t  - T ) ] / ( t  - 7) + lOg(t - T)B?)(f - 7) (16) 

for t near 7, where B?*2*3’ are regular near the origin. Resurgent functions have recently 
been encountered in several areas of mathematical physics including the renormalisa- 
tion group approach to dynamical systems and quantum field theory [3, 4, 7, 81. It is 
not difficult to prove by looking on combinatoric factors that the random path expansion 
(1 1) is convergent in the Borel variable. We deduce that the averaged Green function 
of the exponential model has the resurgent structure. It must be remarked that this is 
a type of ‘instanton’ resurgence and it may be qualitatively different from the ‘renor- 
malon’ resurgence [7]. 

Finally we remark that studying (cluster or polymer) expansions of type (11) in 
the Borel variable may have some advantages. As an example [9] we have extracted 
from the nearest singularity of B ( t )  to the origin (in the exponential model it sits at 
t = -1) the exact decay (including pre-exponential factors) of the density of states for 
E + --CO and the large-order behaviour of the perturbation expansion for the averaged 
Green function. 

The connections between decay rate of the density of states and the large order 
behaviour of perturbation theory are discussed in references [ 10-121. We consider 
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our result as a rigorous justification of the Brkzin-Parisi formula (equation (4) of [12]) 
for our model. 

We remark that other models can be studied analogously [9]. 
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